General Purpose Transistor

NPN Silicon

Features

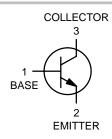
• These are Pb-Free Devices

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V_{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	75	Vdc
Emitter – Base Voltage	V_{EBO}	6.0	Vdc
Collector Current – Continuous	Ic	600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board (Note 1) T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

ON Semiconductor®

http://onsemi.com

SOT-23 CASE 318 STYLE 6

MARKING DIAGRAM

222 = Specific Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
NSCT2222ALT1G	SOT-23 (Pb-Free)	3000 Tape & Reel
NSCT2222ALT3G	SOT-23 (Pb-Free)	10000 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteris	stic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage (I _C = 10	$mAdc, I_B = 0)$	V _{(BR)CEO}	40	_	Vdc	
Collector – Base Breakdown Voltage (I _C = 10 μ	V _{(BR)CBO}	75	_	Vdc		
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Ad$	V _{(BR)EBO}	6.0	-	Vdc		
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)}	= 3.0 Vdc)	I _{CEX}	-	10	nAdc	
Collector Cutoff Current ($V_{CB} = 60 \text{ Vdc}$, $I_E = 0$) ($V_{CB} = 60 \text{ Vdc}$, $I_E = 0$, $T_A = 125^{\circ}\text{C}$)		I _{CBO}	_ _	0.01 10	μAdc	
Emitter Cutoff Current ($V_{EB} = 3.0 \text{ Vdc}$, $I_{C} = 0$)		I _{EBO}	-	100	nAdc	
Base Cutoff Current ($V_{CE} = 60 \text{ Vdc}$, $V_{EB(off)} = 3 \text{ Correct}$	3.0 Vdc)	I _{BL}	-	20	nAdc	
ON CHARACTERISTICS						
$\begin{array}{c} \text{DC Current Gain} \\ \text{($I_{C}=0.1$ mAdc, $V_{CE}=10$ Vdc)} \\ \text{($I_{C}=1.0$ mAdc, $V_{CE}=10$ Vdc)} \\ \text{($I_{C}=1.0$ mAdc, $V_{CE}=10$ Vdc)} \\ \text{($I_{C}=10$ mAdc, $V_{CE}=10$ Vdc, $T_{A}=-$($I_{C}=150$ mAdc, $V_{CE}=10$ Vdc)$ (Note ($I_{C}=150$ mAdc, $V_{CE}=1.0$ Vdc)$ (Note ($I_{C}=500$ mAdc, $V_{CE}=1.0$ Vdc)$ (Note ($I_{C}=500$ mAdc, $V_{CE}=1.0$ Vdc)$ (Note ($I_{C}=100$ mAdc, $V_{CE}=1.0$ Vdc)$ (Note ($I_{C}=1000$ mAdc, $V_{CE}=1.0$ Vdc)$ (Note ($I_{C}=1000$ mAdc, $V_{CE}=100$ Vdc)$ (Note ($I_{C}=1000$ mAdc, $V_{CE}=1000$ Vdc)$ (Note ($I_{C}=1000$ mAdc, $V_{CE}=1000$ MAdc)$ (Note ($I_{C}=1000$ mAdc)$ (Note ($I_{C}=10000$ mAdc)$ (Note ($I_{C}=1000$ mAdc)$ (Note ($I_{C}=1000$ mAdc)$ (Note ($I_{C}=1000$ mA$	e 3) e 3)	h _{FE}	35 50 75 35 100 50 40	- - - 300 - -	-	
	V _{CE(sat)}	_ _	0.3 1.0	Vdc		
Base-Emitter Saturation Voltage (Note 3) $ (I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}) $ $ (I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}) $	V _{BE(sat)}	0.6	1.2 2.0	Vdc		
SMALL-SIGNAL CHARACTERISTICS					•	
Current – Gain – Bandwidth Product (Note 4) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100) MHz)	f _T	300	_	MHz	
Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 10 \text{ Vdc}$	1.0 MHz)	C _{obo}	-	8.0	pF	
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 1$.0 MHz)	C _{ibo}	-	25	pF	
Input Impedance $ \begin{aligned} \text{(I}_{C} &= 1.0 \text{ mAdc, V}_{CE} = 10 \text{ Vdc, f} = 1.0 \\ \text{(I}_{C} &= 10 \text{ mAdc, V}_{CE} = 10 \text{ Vdc, f} = 1.0 \end{aligned} $	h _{ie}	2.0 0.25	8.0 1.25	kΩ		
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ mAdc}$	h _{re}	- -	8.0 4.0	X 10 ⁻⁴		
$\begin{aligned} \text{Small-Signal Current Gain} \\ \text{(I}_{\text{C}} &= 1.0 \text{ mAdc, V}_{\text{CE}} = 10 \text{ Vdc, f} = 1.0 \\ \text{(I}_{\text{C}} &= 10 \text{ mAdc, V}_{\text{CE}} = 10 \text{ Vdc, f} = 1.0 \end{aligned}$	h _{fe}	50 75	300 375	-		
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ Madc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ Madc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ Madc}$	h _{oe}	5.0 25	35 200	μmhos		
Collector Base Time Constant $(I_E = 20 \text{ mAdc}, V_{CB} = 20 \text{ Vdc}, f = 31.$	rb, C _c	-	150	ps		
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S =	NF	_	4.0	dB		
SWITCHING CHARACTERISTICS						
Delay Time	$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = -0.5 \text{ Vdc},$	t _d	_	10	ns	
Rise Time	$I_C = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$	t _r	-	25	113	
Storage Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc}, I_{B1} = I_{B2} = 15 \text{ mAdc})$		t _s	_	225	ns	
Fall Time	t _f	_	60	113		

3. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%.

4. f_T is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

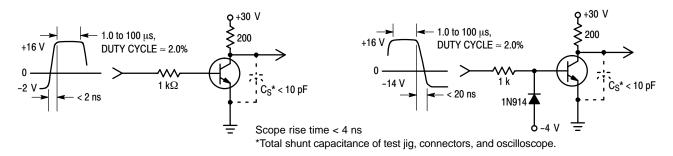


Figure 1. Turn-On Time

Figure 2. Turn-Off Time

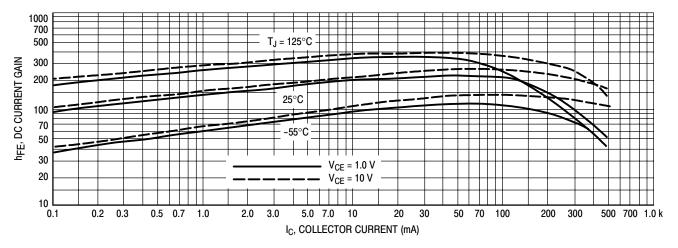


Figure 3. DC Current Gain

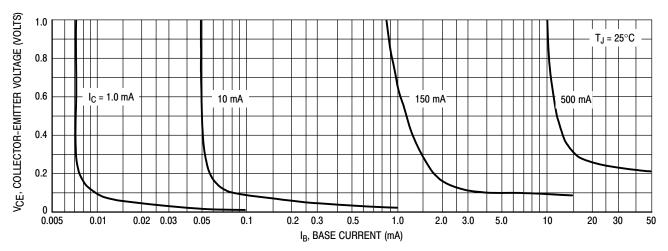


Figure 4. Collector Saturation Region

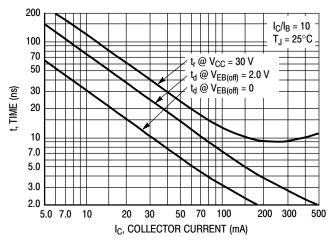


Figure 5. Turn-On Time

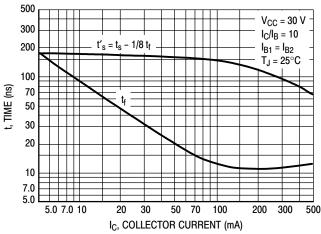


Figure 6. Turn-Off Time

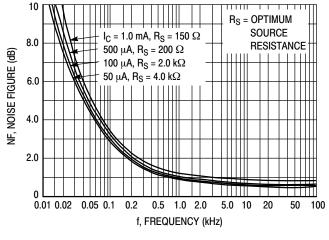


Figure 7. Frequency Effects

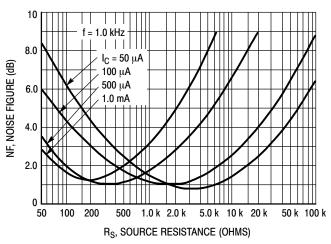


Figure 8. Source Resistance Effects

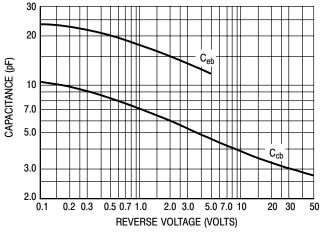


Figure 9. Capacitances

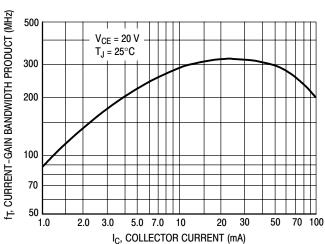
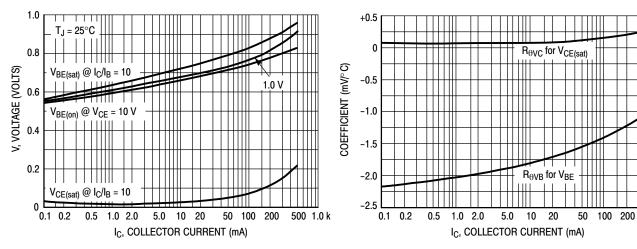


Figure 10. Current-Gain Bandwidth Product



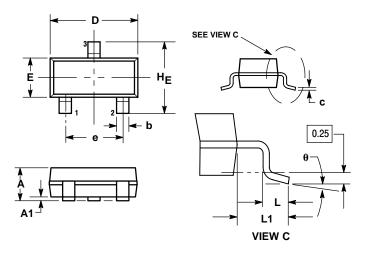

Figure 11. "On" Voltages

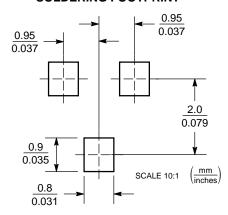
Figure 12. Temperature Coefficients

500

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AN**

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD
 THICKNESS IS THE MINIMUM THICKNESS OF
- BASE MATERIAL. 318-01 THRU -07 AND -09 OBSOLETE. NEW STANDARD 318-08.

		MILLIMETERS			INCHES		
	DIM	MIN	NOM	MAX	MIN	NOM	MAX
	Α	0.89	1.00	1.11	0.035	0.040	0.044
	A1	0.01	0.06	0.10	0.001	0.002	0.004
	b	0.37	0.44	0.50	0.015	0.018	0.020
	С	0.09	0.13	0.18	0.003	0.005	0.007
	D	2.80	2.90	3.04	0.110	0.114	0.120
	E	1.20	1.30	1.40	0.047	0.051	0.055
Ì	е	1.78	1.90	2.04	0.070	0.075	0.081
Ì	L	0.10	0.20	0.30	0.004	0.008	0.012
	L1	0.35	0.54	0.69	0.014	0.021	0.029
	HE	2.10	2.40	2.64	0.083	0.094	0.104

STYLE 6: PIN 1. BASE 2. EMITT

EMITTER COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.